Batched Sparse Codes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Practical Inner Codes for Batched Sparse Codes in Wireless Multihop Networks

Batched sparse (BATS) code is a promising technology for reliable data transmission in multi-hop wireless networks. As a BATS code consists of an outer code and an inner code that typically is a random linear network code, one main research topic for BATS codes is to design an inner code with good performance in transmission efficiency and complexity. In this paper, this issue is addressed with...

متن کامل

Sparse Regression Codes

Developing computationally-efficient codes that approach the Shannon-theoretic limits for communication and compression has long been one of the major goals of information and coding theory. There have been significant advances towards this goal in the last couple of decades, with the emergence of turbo and sparse-graph codes in the ‘90s [1, 2], and more recently polar codes and spatially-coupl...

متن کامل

Sparse codes and spikes

In order to make progress toward understanding the sensory coding strategies employed by the cortex, it will be necessary to draw upon guiding principles that provide us with reasonable ideas for what to expect and what to look for in the neural circuitry. The unifying theme behind all of the chapters in this book is that probabilistic inference—i.e., the process of inferring the state of the w...

متن کامل

Self-Organizing Sparse Codes

Sparse coding as applied to natural image patches learns Gabor-like components that resemble those found in the lower areas of the visual cortex. This biological motivation for sparse coding would also suggest that the learned receptive field elements be organized spatially by their response properties. However, the factorized prior in the original sparse coding model does not enforce this. We ...

متن کامل

Learning sparse codes

We describe a method for learning an overcomplete set of basis functions for the purpose of modeling sparse structure in images. The sparsity of the basis function coefficients is modeled with a mixture-of-Gaussians distribution. One Gaussian captures nonactive coefficients with a small-variance distribution centered at zero, while one or more other Gaussians capture active coefficients with a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2014

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2014.2334315